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Abstract-Thermal contact conductance of nominally flat surfaces in contact was considered, The emphasis 
of the work is on effect of the mode of deformation on the value of conductance. Explicit expressions for 
thermal conductance were derived for cases oC: (1) Pure plastic deformation (2) plastic deformation of the 
asperities and elastic deformation of the substrate and (3) pure elastic deformation. The last two important 
cases are considered for the first time here. Criteria which determine mode of deformation is also presented. 

NOMENCLATURE 

radius of contact; 
actual contact area; 
apparent contact area; 
radius of an adiabiatic channel for a given 
contact point; 
displacement ; 
modulus of elasticity ; 
@,E%YCE,U - 4 + &(l - 4jJ ; 
thermal conductance; 

ncr _- 
ktant? ’ 
microhardness; 
thermal conductivity; 
number of contacts per unit area; 
no/tan2 8; 
dimensionless shape of a variation with 
the distance between surfaces in contact; 
pressure; 

H/P; 
(J2) P 

E’tan; 
heat rate; 

l/2 erfc (rtlJ2); 
the mean of absolute slope of a profile; 
distance between mean planes of two 
surfaces in contact; 

-!- exp (-$/2); 
fi 

d Za, 
--; 
tan 6 Aa 
dimensionless distance between mean 
planes wherl an asperity first came in 
contact; 
Poisson’s ratio; 
y/o; 

radius of curvature of an asperity ; 
p tan2 B 
p, 

D ’ 
standard deviation of profile height; 
contact resistant factor, equation (2). 

INTRODUCTION 

IN THE last thirty years much published experiments 
and theoretical work has been devoted to problems 
related to thermal contact conductance. The basic 
mechanism is understood (e.g. [l-5]). Excellent 
experimental data have been reported, notably by 
Fried [6-S]. Several partially successful correlations 
have been attempted, but a genera1 correlation has 
not been developed. Thisisnot surprising in view ofthe 
large number of parameters and phenomena which 
could affect the results. The loading hysteresis effect 
was considered (e.g. in [15,16]), and was shown to be 
significant but not always producing the same effect 
[16]. Plating was treated in [6] and El?]. Several 
notable publications on directional effects have be- 
come available in recent years [l&19]. Problems 
associated with rough spheres with planes, and rough 
and smooth contact in bolted joint geometry are 
investigated in [20] and [21]. 

No list of significant contributions in the area of 
contact resistance can be complete without works in 
the area of surface description and surface behavior in 
contact. The most notable contributions, which repre- 
sent only a small fraction of the available literature in 
the area, are [22-281. In fact, it should be recognized 
that most difficulties in understanding and explaining 
certain observed phenomena can be related to 
deformation. The main questions which are not satis- 
factorily answered are related to mode of asperities 
deformation and development of prediction for 
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thermal resistance when the asperities deformation is 
elastic. 

This work represents an attempt to bring some facts 
and evidence which could help m answering these 
questions. In particular, considering nominally flat 
surfaces in contact, individual simple expressions for 
thermal contact conductance with assumed plastic 
and elastic deformation will be given. From the basic 
model, it will be concluded what is the probability 
that each will occur. Furthermore, a re-examination 
of the plastic model, taking into account the effect of 
plastic flow in the region of contact area on the surface 
displacement outside the contact, will be made. In 
addition, the effect of the elastic deformation of the 
substrate below the plastic deformation of the asperity 
on the surface parameters will be considered. The 
magnitude and region of significance of these effects 
will be indicated and compared with the available 
experimental evidence in subsequent work [29]. 

Basic relations 
This work is restricted to the case of rough nomi- 

nally flat surfaces in contact in a vacuum under 
conditions of negligible radiation. The extension of 
the results to the cases not covered by the above model 
is reasonably straightforward 130,311. The heat flow 
under steady state conditions across the joint will 
be distributed among the contact spots of different 
sizes existing at the contact plane. With the assump- 
tion that the contact point is circular with a radius 
ai, one can write for each individual contact : 

1 
Qi = 2ka, AT, K. 

AT, is the temperature drop across the interface 
(obtained by extrapolating the respective temperature 
profiles on the two sides of the interface). For geo- 
metrically similar contact, i.e. when the contact plane 
is the surface of symmetry, AT, is the same for all 
contact points. 

J/i is a geometrical factor equal to unity for a single 
contact belonging to an infinite apparent area. The 
value of the geometrical factor has been considered 
by several authors, analytically in [l-5], and using a 
numerical solution in [2]. For “appropriately” 
distributed contacts, i.e. when the contact point is 
in the center of the adiabatic cylinder, in [4] a 
simple expression, which closely approximates the 
analytical and numerical solution, is given as 

$;= 1 -; 1’5 ( .) 
where bi is the radius of the adiabatic cylinder. 

Heat flow per unit apparent area (A3 easily follows 
from (1) as 

Q_CQ,=2kAT c “i/A, 
A.- A, 

-_. 
’ *i 

or, neglecting variations in $i from contact to contact 
compared with variation in ai, 

(3) 

where 

I,? = [l - (ai/bi),,]1’5 = (1 - JA)“5 

where A is the fraction of actual area in contact. 
The thermal contact conductance then follows from 

equation (3) : 

The value of &/A,, can be obtained from considera- 
tion of asperities deformation. 

The surface parameters which appear in the 
expression for XaJA, depend on the way one describes 
the surface. Presently there is no common approach 
for describing surfaces. Three most frequently used 
approaches describe a rough surface by : 

(i) 

(ii) 

(iii) 

distribution of peak height and asperity shape. 
All asperities are assumed to be of identical 
shape (e.g. [22-241); or, two or more generations 
of asperities of similar shape but different size 
scale are superimposed onto each other [26]. 
distribution of surface height (i.e. height of all 
points on a surface and not just peaks) and 
autocorrelation function (e.g. [27]). 
distribution of surface height and distribution of 
surface slope (e.g. [4, 151). 

Usually in all models, the distribution of surface 
height or peaks (depending on the description) is 
assumed to be Gaussian. Either is acceptable accord- 
ing to the extensive experimental observation of actual 
surfaces [28]. However, the second part of surface 
description is not consistent in the three approaches. 
The first approach assumption of identical shape of 
asperities is inconsistent with the other two descrip- 
tions which imply that the expected peak curvature is 
a function of the peak height. Here the third approach, 
which is one of the two less restrictive descriptions, 
will be adopted, i.e. the surfaces are described here by 
standard deviation (a) for combined height distri- 
bution and the average of the absolute value of the 
slope (tan 9 for the combined slope distribution. 
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Using these two parameters, one can rewrite equa- 
tion (4) in dimensionless form as 

where 

(5) 

and 

Relation (5) is derived without any reference to mode 
of deformation ; the evaluation of parameters $ and 
a will, however, depend on a particular mode of 
deformation. 

CONTACT PARAMETERS 

Plastic deformation 
(a) Geometrical model. !n the load range of practical 

interest, it is usually sufficient to treat plastic defor- 
mation of rough surfaces in contact as a pure geo- 
metrical interaction between the asperities of con- 
tacting surfaces. With the concept of only one surface 
rough, having an “equivalent roughness” in contact 
with a smooth one, the above model of geometrical 
interaction implies that the asperities are flattened 
(or equivalently penetrated into the smooth surface) 
without any change in shape of the part of both sur- 
faces not yet in contact. Therefore bringing the two 
surfaces (Fig. 1) together within a distance Y is 
equivalent to slicing off the top of the asperities at a 
height Y above the mean plane. 

FIG. 1. Pure plastic contact 

In [4], using a model such as this, and describing 
the surfaces with Gaussian distribution of the height, 
and random, but independent of the height, distribu- 

tion of the slope, important contact parameters were 
expressed as a function of separation distance. 

The fraction of actual area in contact is given as : 

A = ierfc(q/\/2) = Q(q) SE? (6) 
Cs 

and the sum of the contact radii as 

1 ‘I2 

( > 

Z(V) -- a=jmexp 2 =4. (7) 

Both Z(q) and Q(q) are tabulated in standard mathe- 
matical tables. 

Furthermore, the actual contact pressure in this 
mode of deformation is assumed to be equal to the 
microhardness of the softer material in contact, i.e. 

A = ; = P,. 

From equations (9 and (8) it follows that q = Q- ‘(PJ 
and from equation (7) that a = $Z[Q-‘(P&J which 
together with equations (5) and (3) yield a closed form 
expression for dimensionless thermal contact resis- 
tance : 

h = r Z[Q-‘(Pdl 
P 2 (1 - JPy 

(9) 

Equation (9) gives li, as a function of dimensionless 
pressure only. In Fig. 2, equation (9) is plotted (line 
labeled with y = 0). 

The following simple equation approximates rela- 
tion (9) remarkably well : 

h 
ktane 

P = 1.13 P”‘940r h P P = 1.13 ~ (P/H)@? (10) 
u 

The above form is only slightly different from the 
expression previously suggested in [4]. 

(b) Plastic flow of material considered. Pure geo- 
metrical interaction obviously cannot be a proper 
model for very large pressure (approaching hardness) 
or, equivalently, very low separation approaching 
q -+ 0. This is evident, for example, from equation (9, 
which states that when the mean distance between the 
contacting planes approaches zero the fraction of 
area in contact approaches only one-half. This is a 
direct consequence of neglecting the flow of displaced 
material. Pullen and Williamson [32] experimentally 
investigated plastic flow under large loads. They 
concluded that the volume of material remained 
constant and that the material plastically displaced 
appears as a uniform rise over the entire surface. 
Since the uniform rise will not affect the shape fo the 
surface outside the contact area, equations (9 and 
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(7) still can be used by replacing ‘1 with an imaginary 
separation 1 which is related to the real separation 
q through a geometrical consideration based on the 

FIG. 2. Thermal contact conductance vs interface pressure 
for plastic deformation. 

model of uniform rise. In [32] such an analysis was 
performed, and the following relations were obtained : 

rj = I - 1 Q(l) - Z(l) a>0 
(11) 

For large positive values of I (1 > l), I E 9; for 
I --f - ~0, q = 0, and hence from relation (6) (recalling 
that with this modification one should replace 9 with 
A), when separation is zero (J = - ~0). the fraction of 
area in contact is unity. 

In the same investigation, Pullen and Williamson 
[32] found that the contact area due to the interaction 
of microcontacts is not proportional to the normal 
load ; they proposed as a good approximation : 

A = T;%. 
P 

(12) 

It can be seen that modification due to the plastic 
flow in expressions for thermal conductance (9) and 

(10) is only in replacement of P, with A, or using (12) 
with [P,,/(l + PJ], i.e. for equation (10) 

(104 

This modification will tend to reduce the value of h, 
at relatively high loads, whereas the effect is negligible 
for normal loads. 

(c) Plastic defbrmation with correction for elastic 

displacement. Both plastic deformation models des- 
cribed above do not consider the effects of elastic 
deformation under the contact points. These effects 
would be negligible either if the modulus of elasticity 
of the surface were very large or if the distance between 
neighboring contact points were so small that the 
elastic displacement is approximately the same for 
any part of the surface in contact. Actually these 
never would be the case, and elastic displacement 
beneath a contact point would always be larger than 
for the area outside the contact. As a consequence of 
this, the area of contact for an individual asperity 
would be smaller at a given separation than for the 
pure plastic deformation model. This of course would 
be true for all contact points. Therefore, for the whole 
surface at a given separation, the contact area would 
be smaller, or inversely, to achieve the same area in 
contact, the separation between the contacting sur- 
faces must be smaller. 

By assuming that the deformation of individual 
asperities does not affect the displacement of neigh- 
boring asperities, i.e. that each asperity deformation 
can be considered independently, one can conclude 
that the number of contact points at a given separation 
would remain unchanged. Consequently, it follows 
from the above that the same area in contact, with the 
proposed modification, would be formed with larger 
number of contacts. This of course will affect the value 
of the thermal contact conductance. 

In the appendix, deformation aspects of the above 
phenomena are considered. Figure 3 gives the results 
of the analysis: the values of A/A, and u/a0 as a 
function of the parameter y G H/(E’ tan 9 are plotted 
(the subscript “0” refers to pure plastic model values) ; 
and 

1 1 - v: 1 - v: 

YE- 1 - E- + E-’ 2 

It can be seen that the area in contact is more affected 
by the introduced modification than is the parameter 
a. Furthermore, the modification in a for a given y is 
insensitive to separation. The effect of the separation 
distance TV on A, for a given y, is relatively larger, but 
absolutely is still very weak. The two bounds shown 



Thermal contact conductance 209 

FIG. 3. Effect of elastic deformation of substrate on contact parameters. 

above and below the line represent q = 1 and r~ = 3, 
respectively. They cover the pressure range of prac- 
tical interest; the upper bound represents q = 1. 

One can then approximate A and a for the modified 
model which includes elastic deformation of the 
substrate as 

and 

A = &(Y) Q(rl) 

a = 4,(y)? 
where d1 and I& could be read from Fig. 3. The two 
lines could be approximated by the following ana- 
lytical expressions : 

&(Y) = l/(1 + 2.5 Y1”) 
(14) 

MY) = l/U + 1.05Y). 

From equations (Q-(7), (13) and (14) follows the 
relation for h, with the inclusion of the elastic dis- 
placement modifications as 

h _ Z(Q-‘[(l + ~+Y”~)J’,]) 

p 2(1 + l.O5y)(l - JPp)l.5 
(15) 

In Fig. 2, hp is plotted for values of y = 0, @3 and 1 
respectively. 

It can be seen from the figure that increase in Y, i.e. 
increase of elastic deformation, increases Fi,. This 
effect is more pronounced at lower loads. In the 

correction, one must know the value of y. For 
example, using the properties of stainless steel and 
tan 0 = 0.1 (an average value for bead blasted 
surfaces), the calculated value for Y is B245, which 
gives increase in lip at lower pressure range of about 
17 per cent. For lower values of tan 8, this increase 
would be larger. One should point out that at the 
high pressures, the actual effect of the elastic defor- 
mation of the substrate should be even less than 
indicated in the figure. This is because the modeling 
considered displacement of individual asperities 
independently. At high pressures when the average 
distance between the contacts is not too large, the 
displacements cannot be considered independently, 
i.e. the displacement of one contact will also affect 
the neighboring asperities. This will cause more 
uniform elastic displacement of the asperities and 
decrease the effect of elastic deformation of the 
substrate on thermal contact conductance (if all 
asperities are equally displaced, the effect would be 
zero). 

Elastic deformation 
For an asperity in contact with a rigid flat surface 

in elastic deformation, the contact area can be related 
to the displacement using the Hertzian theory [33] as 

(zaf), = nACipi. (17) 

If the deformation were purely plastic, one gets from 
simple geometrical considerations 

vicinity of P, value of 10T3, one can estimate this 
increase from the following relation : 

(xaF)p = 2nACipi. (18) 

hp = (r;,),=o(l + @6Y). 
Comparison between equations (17) and (18) shows 

(16) that at the same separation 1 between the contacting 
surfaces, the contact area in purely plastic deformation 

In order to determine the effect of the considered for any specific asperity would be twice the contact 
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area in elastic deformation. Since this is true for all 
asperities, the same holds true for the entire contact 
area. Hence, at the same q, 

A elastic 1 
-=_ 
A plastic 2 

or from equation (9, for the elastic deformation, 

A = : erfc (q/,/2) = *Q(q). (19) 

Similarly, from equation (7, one gets for the sum of 
all contact radii : 

1 t12 ( > -- 
a=gJneXP 2 

= -A- Z(q). 
4J2 

(20) 

A number of investigators (e.g. [22,243 have reported 
that even in the elastic mode of deformation the 
actual area in contact is approximately proportional 
to the load; the more complicated the model used for 
description of the rough surface, the closer direct 
proportionality was obtained. Using the description 
adopted in this work, the direct proportionality was 
actually exactly obtained [34] ; specifically, 

A= PJ2 p --c 
E’tan 0 e 

(21) 

where P, could be related to P, and y as P, = ,/2P,y. 
From equations (5) and (19H21) follows an explicit 

relation for li in elastic deformation (denoted further 
with 1;3 as 

h _ 1 Z[Q- ‘W’31 
e 242 (1 - Jp~1.5’ 

(22) 

In Fig. 4, h, is plotted as a function of P,. For com- 
parison on the same figure li, for purely plastic 
deformation is shown as a function of P,. The follow- 
ing simple expression approximates the plot 
accurately : 

or 

jj e = 1.55p o.94 e (23) 

VW 

P,“N P/Plan e It-2 ) 

FIG. 4.Thermal contact conductance vs interface pressure 
for elastic (63 and plastic (hJ deformation of asperities. 

value of 0 1 would not appreciably change the above 
relation. 

There are a few obvious conclusions which can 
be drawn from the results of this analysis. 

(i) The predicted slope of the thermal contact 
conductance vs pressure is the same for purely 
plastic and elastic deformation. This slope is slightly 
less than unity. 

(ii) If P, = P,, the thermal contact conductance is 
higher for the elastic deformation. However, one 
should be very careful not to draw any further direct 
conclusions from that. When P, = P, it does not 
mean that the interface pressures are the same; we 
recall that 

p E (J2)P P 
e --and P, Ed. 

E' tan e 

Hence P, = P, would imply the same interface 
pressure only if 

E’tan 0 . -_ H = J2 ,l.e.y =gn&=$. 

It can be seen from equation (23a) that h, is a very 
weak function of tan 0 (-tan e”‘06). If we substitute 
tan 0 = Ql (the average value for blasted surfaces), 
equation (23a) simplifies to 

/( p 0.94 

h, = 1.9; 2 
0 

. (24) 

Relatively large deviations in tan 6’ from the assumed 

From equations (23) and (lo), one gets for this 
case P,/P, = 0734 or y = @52. Furthermore, for 
y c @52, at the same pressure, the purely plastic 
deformation model will yield a higher h. For y > 052, 
the opposite would be true. _ 

Looking differently at the plot, one can ask at what 
P,/P,, at the same interface pressure, the two ap- 
proaches will give the same h. 
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The above observations are only formal inter- Qu 1.0 y r 1 1 1 I 1 1 1 1 r 1 1 1 
pretation of the results shown in Fig 4, and they do A, o,9 _ 
not provide any explicit indication of what kind of 
deformation would actually take place for two specific 

e 
i o-a - 

interfaces in contact. This is considered in the next K O-7 - 
section. 

; Cl.6 - 0 
Probability for plasticflow to occur g OS- 0 

A priori assumption of mode of deformation ob- 
viously could lead to wrong conclusions. For example, g 

o 4 

if one had assumed elastic deformation of asperities ~~ O 3 
in contact for surfaces with y < 052, one would have z 0 2 _ 
concluded, as shown in the previous section, that h 
would be lower than if plastic deformation were z 

0.1 - 

assumed. This seems surprising, since one would i 0 
intuitively expect that elastic deformation, as a 
consequence of higher area in contact, would yield 
higher h. 

Cl.5 I 0 I 5 20 

Fig. 5. Contact pressure distribution. 
The higher area in contact, however, would occur 

only if contact pressure is lower than hardness (which 
is contact pressure in plastic flow). On the other hand, 
elastic deformation cannot exist if the contact pressure 
is larger than the hardness. Actually when contact 
pressure exceeds 1.1 Y0 [35], where Y0 is the yield 
strength in pure tension (YO z H/3), the elastic 
limit will just be exceeded.*eturning to our example, 
one can calculate the contact pressure for y = 052. 
From equation (21). the average contact pressure in 
elastic deformation is 

E’ tan e 
PC = J2 

or, rewriting, 

E’ tan e 
P,=_- 

HJ2 
H = H = 1.36~. 

YJ2 

Hence, for y = @54, elastic deformation would give 
contact pressure larger than hardness. This, of course, 
implies that for y < O-54, one cannot have elastic 
deformation. Actually, all contacts will not have 
the same contact pressure, although the average 
contact pressure would remain constant. One can 
carry an analysis to determine contact pressure 
distribution over the whole contact area. In [34] such 
an analysis was performed. Figure 5 gives the result, 
where the fraction of area in contact with contact 
pressure larger than PC was plotted as a function of 
dimensionless PC. The result is not very sensitive to 
the pressure level. (q = 1 and 2 respectively represent 
the results for the different separations, i.e. two different 
pressure levels.) 

From the figure, one can see that when PC = 1.1 Y,, 

i.e. for 

1-l Y, 
-- > 1.1 
E’ tan e 

90 per cent of the actual area will have contact pressure 
less than l.lY,, or substituting Y0 = H/3, one can 
conclude that when y > 3 the deformation will be 
predominantly elastic. If one assumes that the elastic 
deformation can proceed for contact pressure even 
larger than 1.1 Y,, one would get an estimate from the 
figure that approximately 90 per cent or more of the 
contact area would have contact pressure larger 
than hardness and hence would be in the plastic 
mode of deformation when y < 033. 

In conclusion, the mode of deformation depends 
on material properties (H and E’) and the shape of the 
asperities (tan 0); it is not sensitive to the pressure 
level. 

DISCUSSION AND CONCLUSIONS 

For rough nominally flat surfaces in contact 
thermal contact resistance was explicitly evaluated 
for assumed pure plastic deformation, plastic defor- 
mation of asperities and elastic deformation of the 
substrates and pure elastic deformation. In addition, 
a criterion determining mode of deformation for 
given surfaces in contact (given geometry, and mate- 
rials) was given. The surfaces were described with 
Gaussian distribution of height and random distri- 
bution of the slope. 

The case of plastic deformation of the asperities 
with elastic deformation of the substrate and pure 
elastic deformation case were solved explicitly for 
thermal contact resistance for the first time here. 
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The slope of thermal contact resistance vs load is 
the asperities, whereas in pure elastic deformation 
The surface parameters which affect the value of 

thermal contact resistance in plastic flow are r.m.s. 
of the surface roughness (0) and the average slope of 
the asperities, whereas in pure elastic deformation 

only o plays an important role. The mode of defor- 

mation, however, is determined by the value of 
parameter y = H /@‘tan Q). Deformation would be 

predominantly elastic for y > 3 and predominantly 
plastic for y < l/3. The inclusion of elastic deforma- 
tion of the substrate in plastic deformation model 

causes the increase in value of thermal conductance. 
This effect is stronger at lower load and hence causes 

change in conductance vs load slope yielding a lower 
slope at the lower pressure level. 
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APPENDIX 

Plastic Deformation with ModiJication due to the Elastic 
Deformation of the Substrate 

When a load is applied to an asperity which is plastically 
deformed, the displacement which results is a combination 
of plastic deformation of the tip and elastic deformation of 
the asperity substrate. If one assumes that the material has an 
infinite modulus of elasticity, the elastic contribution is 
zero. For this cast (see Fig. A.l), the displacement is 

AC, = &. 
2Pi 

The pressure over the contact area, since the main mode of 
deformation is assumed to be plastic, is H (hardness of the 
softer material of the two bodies in contact). If at this point 
we remove the restriction of infinite modulus of elasticity, 
the displacement would increase by an additional AC, 
(Fig. A.l). 

Calculating ai from equations (A.2) and (A.3) and ex- 
pressing it in dimensionless form, one gets f n 

iii = -z”; (A.4) 

where 

If the number of contact points per unit area which originate 
between [ and [ + A[ is denoted by n, one can express the 
fraction of area n contact and a at a given separation q as 

A = x 7 ii:ii’ d[ (A.5) 

Shape after plastic deformation \ 

of the top and elastic deformation 

of the substrate 

FIG. Al. An asperity in plastic deformation with elastic 
deformation of the substrate. 

The total displacement in this case would be 

AC = AC, + AC,. 

To calculate AC, one can consider elastic displacement of 
a disc of radiusai with pressure over it of magnitude H. 
The result is given in [33], where 

AC, zz ;$. 

A different approach would be to consider what should be 
the recovery of the asperity when one removes the load. 
Since the recovery would be reversible elastic deformation, 
one can conclude that for the same amount the contact 
area was elastically displaced during the first loading 
approach. The recovery was calculated in [15]. Since the 
recovery would be different for different parts of the contact 
area (na:), one can estimate the elastic displacement by 
averaging the recovery over the contact area. This proce- 
dure would yield a result only a few per cent different from 
the one given by equation (A.l). The former will be used in 
further analysis. 

Therefore : 

AC=g+‘CaiH, 
2p, 2 E 

64.2) 

If n is the dimensionless distance between the mean planes 
and [ is the dimensionless distance when the asperity first 
came in contact, then 

AC = a([ - q). (A.?) 

where 

Equation (A.5) can be further developed, using (A.l) and 
(A.2) as 

A = 2n 4 (< - r)) pii’ d[ - n2$ iii pii’ d[. (A.?) 
1 

The value of the first integral is clearly the same as in purely 
plastic deformation ; hence 

A = Q(n) -n’y (iii,%i’d[. 
h 

(A.8j 

The second term on the right hand side is the correction due 
to the elastic deformation of the substrate. The expressions 
for ii’ and p are found in [ 153 as 

and CA.91 

A and a, for different values ofv (n = 1 to n = 3 in increments 
of 0.5) were calculated on an IBM 1130 computer as a 
function of Y (from y = 0 to y = 1.0 in increments of 0.1) 
from equations (A.4) (A.9, (A.8) and (A.9). 

Figure 3 shows the results in the form A/A,, and a/a,. 
a/a, is not sensitive to values of rf, and A/A, is only weakly 
dependent on TJ. 
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CONDUCTANCE DE CONTACT THERMIQUE: CONSIDERATIONS THEORIQUES 

RbumLOn considere la conductance thermique de surfaces planes en contact. Ce travail concerne 
particulierement I’effet du mode de deformation sur la valeur de la conductance. On donne des expressions 
pour la conductance thermique dans les cas suivants: (1) Deformation plastique pure, (2) Deformation 
plastique des asp&it&s et deformation tlastique du substrat, (3) Deformation Clastique pure. Les deux 
derniers cas importants sont consider&s pour la premiere fois ici. On presente aussi un critere qui determine 

le mode de deformation. 

THERMISCHER KONTAKTLEITWERT, THEORETISCHE UNTERSUCHUNGEN 

Zusammenfassung- Es wurde der thermische Kontaktleitwert von einander bertihrenden ebenen 
Oberfllchen untersucht. Die Betonung dieser Arbeit liegt auf der Abhiingigkeit der Grijsse des Leitwertes 
von der Art der Verformung. Eindeutige Beziehungen fiir den thermischen Leitwert wurden fiir folgende 
FiiIle hergeleitet : 

(1) rein plastische Verformung 
(2) plastische Verformung der Rauheiten und elastische Verformung des Grundprolils 
(3) rein elastische Verformung. 

Die zwei letzteren wichtigen FLIle wurden hier zum erstenmal untersucht. Kriterien zur Bestimmung der 
Art der Verformung wurden such angegeben. 

TEHJIOBAH ICOHTAHTHAFI IIPOBO~H~lOCTb. 
TEOPETBYECKBE HCCJlEjIOBAHHfI 

AHHOT&l(&%#l-PaCCMaTpHBaeTCR TeIIJIOBaR KOHTaKTHaR FIpOBO@4MOCTb HOMllHaJIbHO IUIOCKHX 

KOHTaKTElpyloIQHX IIOBepXHOCTeti. OCHOBHOe BHllMaHHe B pa6oTe y~WIHt?TCH BJIIIRHHIO BElAa 

~e@OpMaI&IH Ha BeJWillHy IIpOBORMMOCTH. BbIBeAeHbI BbIpameHHH 8x3 TeIIJIOBOti II~OBOAM- 

~0cTa ASH cnysaeB : (1) qncro nnacTnsecKoB ge@opMaqnH, (2) nnacTnrecRoll ge@ophraRnrr 
mepoxosaTocTet% *I ynpyroi ae@opMarIrrn CJIOR, nemawer0 Hmrte, H (3) ~CTO ynpyroti 
,I@lOpMa~HSi. nOCJie~HLlf2 ABa BaH(HbIX CJIyWJ-3 paCCMaTp&lBElIOTCH BIEpJ3bI63. npeACTZlBJIeHb1 

rcpmrepnn ,onpeAenflfoqMe BMR Ae*opmaqwi4. 


